
Enumerations of the Kolmogorov Function

Richard Beigela Harry Buhrmanb Peter Fejerc

Lance Fortnowd Piotr Grabowskie Luc Longpréf

Andrej Muchnikg Frank Stephanh Leen Torenvlieti

Abstract

A recursive enumerator for a function h is an algorithm f which enu-
merates for an input x finitely many elements including h(x). f is an
k(n)-enumerator if for every input x of length n, h(x) is among the
first k(n) elements enumerated by f . If there is a k(n)-enumerator
for h then h is called k(n)-enumerable. We also consider enumerators
which are only A-recursive for some oracle A.

We determine exactly how hard it is to enumerate the Kolmogorov
function, which assigns to each string x its Kolmogorov complexity:

aEmail: beigel@cis.temple.edu. Deptartment of Computer and Information Sciences,
Temple University, 1805 North Broad Street, Philadelphia PA 19122, USA. Research per-
formed in part at NEC and the Institute for Advanced Study. Supported in part by a State
of New Jersey grant and by the National Science Foundation under grants CCR-0049019
and CCR-9877150.

bEmail: buhrman@cwi.nl. CWI, Kruislaan 413, 1098SJ Amsterdam, The Netherlands.
Partially supported by the EU through the 5th framework program FET.

cEmail: fejer@cs.umb.edu. Department of Computer Science, University of Mas-
sachusetts Boston, Boston, MA 02125, USA.

dEmail: fortnow@cs.uchicago.edu. Department of Computer Science, University of
Chicago, 1100 East 58th Street, Chicago, IL 60637, USA. Research performed in part at
NEC Research Institute.

eEmail: pgrabows@ix.urz.uni-heidelberg.de. Institut für Informatik, Im Neuenheimer
Feld 294, 69120 Heidelberg, Germany.

fEmail: longpre@cs.utep.edu. Computer Science Department, UTEP, El Paso, TX
79968, USA.

gEmail: muchnik@lpcs.math.msu.ru. Institute of New Techologies, Nizhnyaya Radi-
shevskaya, 10, Moscow, 109004, Russia. The work was partially supported by the Russian
Foundation for Basic Research grants 01-01-00505 and 02-01-10904.

hEmail: fstephan@cse.unsw.edu.au. National ICT Australia LTD, Sydney Research
Laboratory at Kensington, The University of New South Wales, Sydney NSW 2052, Aus-
tralia. Research supported by the Deutsche Forschungsgemeinschaft (DFG), Heisenberg
grant Ste 967/1-1 while previously working at the Universität Heidelberg.

iEmail: leen@science.uva.nl. Institute for Language Logic and Computation, Univer-
sity of Amsterdam, Plantage Muidergracht 24, 1018 TV Amsterdam, The Netherlands.

1

Electronic Colloquium on Computational Complexity, Report No. 15 (2004)

ISSN 1433-8092

• For every underlying universal machine U , there is a constant a
such that C is k(n)-enumerable only if k(n) ≥ n/a for almost
all n.

• For any given constant k, the Kolmogorov function is k-enumer-
able relative to an oracle A if and only if A is at least as hard as
the halting problem.

• There exists an r.e., Turing-incomplete set A such for every non-
decreasing and unbounded recursive function k, the Kolmogorov
function is k(n)-enumerable relative to A.

The last result is obtained by using a relativizable construction for a
nonrecursive set A relative to which the prefix-free Kolmogorov com-
plexity differs only by a constant from the unrelativized prefix-free
Komogorov complexity.

Although every 2-enumerator for C is Turing hard for K, we show
that reductions must depend on the specific choice of the 2-enumerator
and there is no bound on the quantity of their queries. We show
our negative results even for strong 2-enumerators as an oracle where
the querying machine for any x gets directly an explicit list of all
hypotheses of the enumerator for this input. The limitations are very
general and we show them for any recursively bounded function g:

• For every Turing reduction M and every non-recursive set B,
there is a strong 2-enumerator f for g such that M does not
Turing reduce B to f .

• For every non-recursive set B, there is a strong 2-enumerator f
for g such that B is not wtt-reducible to f .

Furthermore, we deal with the resource-bounded case and give char-
acterizations for the class Sp

2 introduced by Russell and Sundaram and
the classes PSPACE, EXP.

• Sp
2 is the class of all sets A for which there is a polynomially

bounded function g such that there is one tt-reduction which
reduces A to every strong 2-enumerator for g.

• PSPACE is the class of all sets A for which there is a polynomi-
ally bounded function g such that there is one Turing reduction
which reduces A to every strong 2-enumerator for g. Interest-
ingly, g can be taken to be the Kolmogorov function for the
conditional space-bounded Kolmogorov complexity.

• EXP is the class of all sets A for which there is a polynomi-
ally bounded function g and a machine M which witnesses A ∈
PSPACEf for all strong 2-enumerators f for g.

Finally, we show that any strong O(log n)-enumerator for the condi-
tional space-bounded Kolmogorov function must be PSPACE-hard if
P = NP.

2

1 Introduction

The Kolmogorov complexity of a binary string x, C(x), is the size of the
smallest program that outputs x. Kolmogorov complexity has its roots in
the study of randomness: it is one way to measure randomness in a string.
It has had a vast area of applications, including information theory, combi-
natorics, analysis of algorithms, distributed computing, statistical properties
of long finite and of infinite sequences, learning theory, and even quantum
information processing. It proved to be an invaluable tool in proving or sim-
plifying the proofs of a large number of lower bounds. See Li and Vitányi [19]
for a discussion of many of these directions.

The Kolmogorov complexity is not computable [9, 16, 26], it is even hard
for every r.e. set. When a set or function is not computable or intractable,
one often turns to the complexity of approximations. For example, would
it be possible to approximate the Kolmogorov function to within reasonable
bounds? Kolmogorov [27] showed that the Kolmogorov complexity function
can be approximated from above: there is a total recursive function C̃ such
that C(x) = min{C̃(t, x) : t = 1, 2, 3, . . .}.

A different approach to approximation is that if we cannot compute the
result of the function exactly, perhaps it would be possible to output several
candidates for the result of the function, one of which is the actual result.
Traditional approximations are a special case of this, in which the set of
candidates is the set of numbers in a given range. This kind of approximation
has been called enumeration complexity, see [1, 2, 4, 5, 7, 8, 12, 18]. Bill
Gasarch suggested the natural question whether we can approximate the
Kolmogorov function in this sense, or more precisely, how many values does
a Turing machine need to output before it is guaranteed that one of the
values is C(x).

By a simple table-lookup argument, C(x) can be (n− a)-enumerable for
every a, where n = |x|. For every constant a there is even a programming
system such that C(x) is n/a-enumerated, see Remark 3.2. However, we
show that for every programming system and enumeration of the resulting C
there is another constant c such that for every length n there is an x ∈ {0, 1}n

for which the enumeration outputs more than n/c many hypotheses.
Next we look at how much extra power a Turing machine needs before

it can compute an O(1)-enumeration of the Kolmogorov function. We show
that such a machine must be powerful enough to compute the Kolmogorov
function directly. That is, for constant k, the Kolmogorov function is k-enum-
erable relative to an oracle A if and only if the halting problem is Turing-
reducible to A. However we show in Theorem 3.7 that for some very slowly
growing function k, the Kolmogorov function is k(n)-enumerable relative to

3

an oracle for an incomplete r.e. set.
The proof of Theorem 3.7 is based on a result which is more than just

a tool. It shows that there are non-recursive oracles A relative to which
the prefix-free Kolmogorov complexity is up to a constant identical with the
non-relativized one. This class of oracles is obviously closed under Turing
reduction and it has several other natural characterizations [21].

Then we investigate the computational power provided by an oracle for
a k-enumerator. We show that a single query to a strong 2-enumerator for
the Kolmogorov function allows us to extend a partial recursive function
to a total recursive function. However, even unlimited access to a strong
2-enumerator provides essentially no help in computing sets.

Our results have some nice complexity theoretic counterparts. In Sec-
tion 6, we characterize the class Sp

2 [24] in terms of bounded truth-table and
truth-table reductions to strong 2-enumerators. We show that P = PSPACE
if the polynomial space-bounded Kolmogorov function has a polynomial-time
strong 2-enumerator. This result makes use of the theorem that the sets in
the polynomial hierarchy are Turing reducible to any strong 2-enumerator
for the Kolmogorov function independent of the actual choice of the enumer-
ator. This contrasts to the recursion theoretic case where no non-recursive
set is Turing reducible to an arbitrary enumerator by a fixed reduction. Fi-
nally we show that every strong O(logn)-enumerator of the polynomial-space
bounded Kolmogorov function is hard for PSPACE under nondeterministic
polynomial time reductions.

2 Preliminaries

We assume the reader is familiar with basic notions in computational com-
plexity theory. Fix a universal Turing machine U . Except as explicitly
stated, all our results are independent of the particular choice of the uni-
versal machine. Strings are denoted as lower case letters x, y, u, v, . . . and
are all elements of {0, 1}∗. We use the 1-1 correspondence between strings
and binary numbers and have numbers sometimes appear as arguments to
functions on strings and vice versa. Also we let functions defined on strings
sometimes act on numbers where the length of the number is the logarithm
of its value.

Definition 2.1 The conditional Kolmogorov complexity function C(x|y), see

[19], is given as C(x|y) = min{|p| : U(p, y) = x} where p stands for a program

and U for a universal acceptable numbering of the functions y → U(p, y).
We also use an unary version U(p) as an abbreviation for U(p, λ) and let

C(x) = min{|p| : U(p) = x} be the unconditional Kolmogorov complexity. In

4

most places, we will just work with the unary U and unconditional complexity

C. U and C have recursive approximations Us and Cs such that

• There is a q such that U0(qx) = x;

• U(p) = x⇔ (∃s) [Us(p) = x];

• Cs = min{|p| : Us(p) = x};

• The function s, x→ Cs(x) is total and recursive in both parameters.

The first condition guarantees that not only C(x) ≤ |x|+ c but also, for each

s, Cs(x) ≤ |x| + c for the constant c = |q|.

Hartmanis [13] defined a time-bounded version of Kolmogorov complexity,
but resource-bounded versions of Kolmogorov complexity date back as far as
1968 [3], see also [19]. So Cspace may be defined as space and time-bounded
versions of C in the usual way.

Intuitively, a computable k-enumerator for a function h enumerates on any
input x up to k(|x|) possibilities such that the value h(x) is among these
values. Formal definitions are given below.

Definition 2.2 (k(n)-Enumerable) A recursive k(n)-enumerator f for a

function h is an algorithm which enumerates on input x a finite set, denoted

by f(x), such that

• h(x) is among the enumerated values: h(x) ∈ f(x);

• the cardinality is at most k(n): |f(x)| ≤ k(n) where n is the length

of x.

If a function h has a recursive k(n)-enumerator f then h is called k(n)-enum-

erable.

If f is a recursive k(n)-enumerator for h and if in addition x→ |f(x)| is

a computable function then f is called a strong k(n)-enumerator for h and h
is said to be strongly k(n)-enumerable.

For an oracle A, an A-recursive enumerator is an enumeration algorithm

using the oracle A; furthermore, a strong A-recursive enumerator is an A-re-

cursive enumerator where the function x → |f(x)| is also A-recursive. If it is

not important, relative to which oracle A an A-recursive (strong) enumerator

f is computed, then f is just called a (strong) enumerator.

In Section 4, strong enumerators are also used as oracles themselves; the

query protocol is that a query is made at a place x and an explicit list of the

elements of the set f(x) is returned.

5

If one would query a recursive enumerator as an oracle by the protocol given
above, it might be that one would retrieve information that cannot be com-
puted. In contrast to that, a recursive strong enumerator does not give away
any nonrecursive information. Therefore the above protocol of access to enu-
merators as oracles is indeed more adequate for strong enumerators. So we
consider only strong enumerators as oracles. Friedberg and Rogers [11] in-
troduced the notion of enumeration-reducibility, which is often abbreviated
as e-reducibility. This notion would give an adequate environment to deal
with computations relative to enumerators (and not only strong enumera-
tors). But since most of our results using an enumerator as an oracle are
negative results which even hold for accessing strong enumerators, it would
not pay off to formalize our results within the framework of e-reducibility.
Instead we limit ourselves to querying strong enumerators. In addition we
consider reductions to sets A relative to which an A-recursive enumerator for
C has certain properties (like, for example, being a 2-enumerator).

Remark 2.3 In the following, one denotes by f x
t the t-th element enumer-

ated by f on input x. Thus the following connections hold between enumer-

ators and the partial function x, t→ f x
t :

• For every enumerator f and every x there is a bound bx such that

fx
t is defined iff t ∈ {1, 2, . . . , bx}. Furthermore, f(x) = {f x

t : fx
t is

defined} = {fx
1 , f

x
2 , . . . , f

x
bx
}.

• f is an A-recursive enumerator iff the function x, t → f x
t is a partial

A-recursive function.

• f is a strong A-recursive enumerator iff the function x, t → f x
t is a

partial A-recursive function and has an A-recursive domain.

If f is a (not necessarily recursive) enumerator for the Kolmogorov func-

tion, then one can without loss of generality assume the following additional

properties of f :

• For all x, fx
1 > fx

2 > . . . > fx
bx

.

• Assume that Kolmogorov complexity is defined with respect to the uni-

versal Turing machine U . For every x, t where f x
t is defined there is a

p ∈ {0, 1}fx
t such that U(p) = x.

Note that these conditions imply that C(x) = f x
bx

. Thus one cannot compute

bx from x.

In order to keep the notion simple, k depends only on the length of x. We
denote the length of x by n and might refer to k(n)-enumerators. When k

6

is constant, we will speak of 2-enumerators, 3-enumerators, k-enumerators
and so on.

A set A is weak-truth-table reducible (wtt-reducible) to set B if there is a
Turing reduction M from A to B such that there is a recursive function g
which is an upper bound for the length of all queries of M : MB(x) never
asks queries to B of length greater than g(x). Furthermore, A is truth-table

reducible (tt-reducible) to B if there is a Turing reduction M from A to B
such that MC(x) is defined for all oracles C and inputs x. Note that for
tt-reductions there also exists the upper bound g on the length of the queries
of M .

3 Bounds for Turing Reducibility

The fact that the Kolmogorov function itself is hard for r.e. sets is a folk
theorem with a relatively easy proof. Kummer [17] showed that the halting
problem, K, is even tt-reducible to C. Conversely, with K as an oracle we can
easily decide the Kolmogorov complexity of any string. So, loosely speaking,
C and K have the same hardness.

Li and Vitanyi [19] considered functions m with the following properties:
m is nondecreasing, m is unbounded and m(n) ≤ C(x) for all n and x ∈
{0, 1}∗ with |x| ≥ n. The proof of the hardness of the Kolmogorov function
can be adapted to show that m is also hard for r.e.; one can even exactly take
the proof in [27]: min{n : m(n) > 2e} must be larger than min{t : ϕe,t(e) ↓}
if e ∈ K. For if e ∈ K and ϕe,t′(e) ↓ only for t′ > min{n : m(n) > 2e}, then
C(0min{t′:ϕe,t′(e)↓}) > 2e. Yet it is described by e. This can only be true for
finitely many e.

This paper is not about the complexity of the Kolmogorov function it-
self, but about enumerations of the Kolmogorov function. We ask how hard
are these enumerations? Clearly, the complexity depends on the number
of outputs of such a function. The Kolmogorov function can be seen as a
1-enumerator for itself and vice versa. Thus every 1-enumerator for C is
hard for r.e. sets. On the other hand, for any constant a, we can compute
an (n − a)-enumerator for C, essentially a Turing machine that outputs all
values v with c + a < v ≤ n + c on inputs of length n except on the finite
number of strings that have C(x) ≤ c+a; there C(x) is output explicitly. So
the complexity somehow depends on the number of values that are output
by the enumerator. We show first that no recursive function can do better
than essentially enumerate all possible values of C.

7

Theorem 3.1 There is a constant a depending only on the universal ma-

chine U defining the Kolmogorov complexity C such that every k(n)-enume-

rator f satisfies k(n) ≥ n/a for almost all n.

Proof: Let C be the plain Kolmogorov complexity and U be the underlying
unary universal machine. Furthermore, there is an enumeration of enumera-
tors such that the following holds:

• The function x, t→ fx
t is partial-recursive.

• For each x there is a number bx such that fx
t is defined iff 1 ≤ t ≤ bx;

note that no fx
t is defined in the case that bx = 0.

• For every x, t such that f x
t is defined there is a p ∈ {0, 1}fx

t with
U(p) = x.

• For every x, e, t such that 0e1 is a prefix of x, the output of f and of
the e-th enumerator are compatible in the following sense:

– whenever fx
t is defined, fx

t occurs also in the output of the e-th
enumerator at input x;

– whenever the e-th enumerator at input x enumerates C(x), there
is a t with fx

t = C(x).

Informally, the last condition says that whenever the e-th enumerator is an
k(n)-enumerator for C then f restricted to the inputs x with prefix 0e1 is
also a k(n)-enumerator for C on this restricted domain. These properties are
obtained by adapting Remark 2.3 to a list of operators.

Let e be an index of an k(n)-enumerator and consider any n ≥ 2e. Let
Xn,e = {0}e · {1}1 · {0, 1}n−e. Let in the following m be the maximal number
such that there is an x ∈ Xn,e with fx

m being defined; note that m ≤ k(n)
and C(x) = fx

m for this x. There are two cases.
(a) There is an x ∈ Xn,e with fx

m being defined and fx
m ≥ n/2 − e. A

program knowing m,n, e can simulate the function f until an x is found such
that fx

m is defined and fx
m ≥ n/2. So one can describe x with c1 + 4 · log(n)

many bits for a constant c1 being independent of n,m, e. It follows that
n/2 ≤ c1 + 4 · log(n) and thus case (a) holds only for finitely many n.

(b) If fx
m is defined for an x ∈ Xn,e then fx

m < n/2 − e. Let

m′ = max{t ≤ m : (∃x ∈ Xn,e) [fx
t is defined and C(x) ≥ n− t · b/2 − e]}

where b is the greatest lower integer bound for n/m. Note that m′ < m since
otherwise case (a) would hold. Among the x ∈ Xn,e where fx

m′+1 is defined
there is an z where the computation of f z

m′+1 terminates last. There is a

8

d ≥ 1 such that f z
m′+d = C(z). There is a program y of length f z

m′+d which
computes z. By choice of m′, C(z) < n− (m′ +d) · b/2. Now it is shown that
given y, b, d, one can compute an x′ of length n with C(x′) ≥ C(z)+d·b/2−e.

1. Compute U(y) – the result is z.

2. Compute the number of 0 before the first occurrence of a 1 in z – the
result is e.

3. Compute the length of y – the result is C(z).

4. Compute the length of z – the result is n.

5. Find the number m′ such that f z
m′+d = C(z) – the value m′ is unique

and the same as above.

6. Determine the number s of steps to compute f z
m′+1 and let

Y = {x ∈ Xn,e : fx
m′+1 is computed in up to s steps}

– by choice of z, Y contains exactly all x ∈ Xn,e where fx
m′+1 is defined

at all.

7. Search for an x′ ∈ Xn,e − Y such that fx′

m′ ≥ C(z) + d · b/2 – this x′

exists by the choice of m′ and fx′

m′ = C(x′) by fx′

m′+1 being undefined.

So one has that C(z) + d · b/2 ≤ C(x′). Furthermore, x′ was computed from
b, d and y, thus C(x′) ≤ C(z)+ 2 · (log(b)+ log(d))+ c2 for some constant c2.
Recall that log(b) + log(d) = log(b · d). So, b · d ≤ 4 · log(b · d) + 2 · c2. The
value a = max{b′ + 2 : b′ is a natural number and b′ ≤ 4 · log(b′) + 2 · c2} is
an upper bound for b + 1 and thus for n/m.

So, putting all things together, case (b) applies to all sufficiently large
n and k(n) ≥ n/a for the a defined in this case. Note that the constants
c1, c2 are independent from e and that the above construction goes through
whenever the e-th enumerator is an enumerator for C. 2

Remark 3.2 The result above tight: For every positive integer a there is a

universal machine U such that every program’s length is divisible by a. Then

C(x) is strongly n/a-enumerable for this fixed a.

In order to prove the Turing-hardness of k-enumerating the Kolmogorov func-
tion, we state some properties of Π0

1 classes which are used in the proof of
this result.

9

Remark 3.3 (Π0
1-classes) An important ingredient for the next proof is the

concept of Π0
1-classes and the fact that such a class has a member which is

not above a given non-recursive set.

A Π0
1-class is a class of sets such that there is a nullary oracle-machine

M which either never halts or rejects the given set. As accepting an infinite

set is an infinite process, it is adequate to define acceptance in this case by

the absence of a (rejecting) halting state of M . So the Π0
1-class S defined by

M is given as

S = {B ⊆ lN : MB never halts}.

Equivalently, one can define that a Π0
1-class is the set of infinite branches of

a binary recursive tree T ; here σ ∈ T iff M has not yet halted and rejected

with oracle σ: Mσ is undefined.

One can relativize the concept of a Π0
1-class to an oracle A and adapt a

result of Jockusch and Soare [15, Theorem 2.5] to the following. Given a set

A 6≥T K, the relativized Π0
1-class

S = {B ⊆ lN : MA⊕B never halts}

is either empty or contains a set B such that A⊕B 6≥T K.

Theorem 3.4 Let k be a constant. If the Kolmogorov function is k-enumer-

able relative to a set A then A ≥T K.

Proof: Assume by way of contradiction that A 6≥T K and the Kolmogorov
function C is k-enumerable relative to A via f . In particular, x, t → f x

t is a
partial A-recursive function.

Let Ks be a recursive enumeration of K in the sense that Ks contains
those s elements which are enumerated into K first; K0 = ∅. Recall from
Definition 2.1 that C can be approximated monotonically from above by the
function s, x→ Cs(x).

We uniformly in n, i recursively enumerate sets Xn,i. The algorithm is
given below. It has n as a parameter and keeps track of the other parameter
i; for each n, i there is at most one stage where elements are enumerated into
the set Xn,i.

• In stage 0 let i = 0 and Xn,0 = {0, 1}(n+1)(n+1). Furthermore, initialize
Xn,1, Xn,2, . . . as empty sets.

• In stage s = 1, 2, . . ., check whether

{0, 1, . . . , n} ∩Ks 6= {0, 1, . . . , n} ∩Ks−1.

If so, do the following:

10

– Update i = i+ 1.

– While |Xn,i| < 2(n+1)(n+1−i), select that x ∈ Xn,i−1−Xn,i for which
Cs(x) is greatest and enumerate x into Xn,i.

Note that for every n, the parameter i is in the limit the number of stages s
such that some m ≤ n goes into K at s.

Consider the class S of all functions F mapping each n into Xn,0 such
that, for all n and i ∈ {0, 1, . . . , n+ 1}, either Xn,i = ∅ or F (n) ∈ Xn,i. Note
that formally S does not contain functions F but coded versions BF of these
F where each BF has the characteristic function F (0) ·F (1) ·F (2) · . . . being
obtained from F by concatenating the strings of the values of F ; BF and F
can easily be calculated from each other since |F (n)| = (n+ 1)2 for all n.

The class S is a Π0
1-class since the conditions to be checked are uniformly

Π0
1: Whenever some element is enumerated intoXn,i then exactly 2(n+1)(n+1−i)

many elements are enumerated into Xn,i. So whenever one discovers thatXn,i

is not empty, one can check explicitly whether F (n) ∈ Xn,i.
Furthermore, S is not the empty class. A witness for the nonemptyness

is the function F which is defined on input n as follows: Take i be the
largest number with Xn,i 6= ∅ and let then F (n) be the lexicographically
minimal element of Xn,i. Since Xn,i ⊆ . . . ⊆ Xn,1 ⊆ Xn,0, one has that
F (n) ∈ Xn,0, Xn,1, . . . , Xn,i and BF is a member of S.

Using Remark 3.3, we fix F such that BF ∈ S and A⊕BF 6≥T K.
Now we construct a (A ⊕ BF)-computable function g which dominates

the function cK given by

cK(n) = max{s : s = 0 ∨ {0, 1, . . . , n} ∩Ks 6= {0, 1, . . . , n} ∩Ks−1}

Then, for almost all n, n ∈ K ⇔ n ∈ Kg(n). This gives then A ⊕ BF ≥T K
in contradiction to the assumption on A and the choice of BF .

For each n let jn be the maximal t such that f
F (n)
t is defined. Now let j

be the limit superior of the jn for n→ ∞ and let

g(n) = s for the first stage s for which there is an m ≥ n such

that f
F (m)
j is defined within s steps and Cs(F (m)) = f

F (m)
j .

Now it is verified that g dominates cK.
Given any such n, let m be the value of the variable of the same name

in the algorithm g. Furthermore, denote by s1, . . . , si the stages where the
elements of Xm,1, . . . , Xm,i are enumerated into these sets. Without loss of
generality, 0 ∈ K and i, si > 0. So i is the largest index of a set Xm,i

which is not empty and s1 < s2 < . . . < si. Furthermore, F (m) ∈ Xm,i and
si = cK(m).

On the one hand F (m) enters Xm,i at stage si and it follows from the
definition of the Xm,i that Csi

(F (m)) ≥ Csi
(x) for at least half of the mem-

11

bers x of Xm,i−1. Since Xm,i−1 has 2(m+1)(m+2−i) members, Csi
(F (m)) ≥

(m+ 1)(m+ 2 − i) − 1.
On the other hand, if one knows m, i and the number of elements which

go into Xm,i before F (m) then one can compute F (m). Since i ≤ m + 1, a
prefix-free coding of the numbers m, i can be done using 3 log(m) + 4 bits.
Furthermore, Xm,i has 2(m+1)(m+1−i) many members. Thus there is a constant
c with C(F (m)) ≤ (m+ 1)(m + 1 − i) + 3 log(m) + c.

If n is sufficiently large, then one can use m ≥ n to conclude that jm = j,
C(F (m)) = f

F (m)
j and Cs(F (m)) = C(F (m)) ≤ (m + 1)(m + 1 − i) +

3 log(m)+ c < (m+1)(m+2− i)−1 ≤ Csi
(F (m)). Since C is approximated

from above, it follows that s > si and g(n) = s > si = cK(m) ≥ cK(n). So g
dominates cK although g is computable relative to A⊕BF . This contradiction
gives that the assumption A 6≥T K is false. So C is k-enumerable only relative
to those oracles which are hard for the halting-problem. 2

If k is no longer bounded, but a recursive increasing function, then Theo-
rem 3.7 below shows that one can find an r.e. incomplete degree relative to
which the Kolmogorov function is k-enumerable. Theorem 3.7 uses the ex-
istence of a relativized construction giving a set which is low for prefix-free
Kolmogorov complexity. Such sets are of independent interest and play a
major role in the field of algorithmic randomness.

Definition 3.5 A set B 6≤T A is low for prefix-free Kolmogorov complexity
relative to A if (∃c) (∀x) [HA(x) ≤ HB(x) + c].

An enumeration operator W : A → WA is given by a recursive subset W̃ of
{0, 1}∗ × {0, 1}∗ for which one defines that

x ∈ WA ⇔ (∃ prefix σ of A) [(x, σ) ∈ W̃].

Note that WA is recursively enumerable relative to A for every oracle A. One
can adapt the notion of a universal prefix-free machine in order to get that
it is universal for every oracle A: Starting with an enumeration V A

0 , V
A
1 , . . .

of all prefix-free partial A-recursive machines, let UA(0e1p) = V A
e (p) and

UA(0e) be undefined for all e, p. For UA there is a partial-recursive function
Ũ such that its domain is a recursive subset of {0, 1}∗ × {0, 1}∗ and

UA(p) = x ⇔ (∃ prefix σ of A) [Ũ(p, σ) = x].

Without loss of generality Ũ(p, η) = Ũ(p, σ) whenever Ũ(p, σ) is defined and
σ is a prefix of η.

Theorem 3.6 There is an enumeration operator E such that for every oracle

A, A⊕ EA is low for prefix-free Kolmogorov complexity relative to A.

12

Proof: One constructs E satisfying the following two conditions.

• EA is simple relative to A.

• There is a constant c such that (∀x) [HA(x) ≤ HA⊕EA

(x) + c].

The construction is a modification of ideas of Post’s construction of a simple
set [22, Theorem III.2.11]. This modification takes care of two aspects: first
the construction is made uniform in all oracles, second only those elements
are enumerated which do not violate the Kraft-Chaitin condition explained
below.

The sets Ẽ and G̃ are actually recursive and one defines by induction
over σ (with respect to length-lexicographic ordering) whether a tuple with
last component σ goes in and if so, which one. In this definition the oracle
B considered has to agree with σ on the domain of σ. At the other places
the value of B does not matter since only computations lasting |σ| steps are
taken into account and they do not inspect B outside the domain of σ. So
one can take the oracle B to have the characteristic function σ0∞.

The step σ for Ẽ searches for the first e ≤ |σ| and first x ≤ |σ| to satisfy
the following conditions. If (e, x) are found, one puts (x, σ) into Ẽ otherwise
no pair (y, σ) goes into Ẽ. The first two conditions are from the construction
of Post’s simple set, the third is the Kraft-Chaitin condition.

• The first condition is x ≥ 2e.

• Note that the elements enumerated into the set EB within |σ| steps
are precisely those y such that there is a proper prefix η of σ with
(y, η) ∈ Ẽ. Let EB

|σ| denote this set. The second condition is that no

element is enumerated into the intersection of WB
e and EB within |σ|

steps, that is, the sets WB
e,|σ| and EB

|σ| are disjoint.

• Let rB
|σ| be the sum of all 2−|p| where (p, y, η) ∈ G̃ for some y, η with

|η| ≥ x and η being a proper prefix of σ; the sum of 0 sumands is 0.
The third condition is that rB

|σ| < 2−e.

At the step σ for G̃, one searches for the first p of length up to |σ| such that
p and the prefix η of B ⊕ EB

|σ| of length 2|σ| satisfy

• Ũ(p, η) is defined and takes a value u;

• (p, u, τ) /∈ G̃ for any proper prefix τ of σ.

If p, u are found then (p, u, σ) goes into G̃ else no triple with last component
σ goes into G̃. This completes the step to define which tuples with last
component σ go into Ẽ and G̃.

For the verification of the construction, let EA be the set of all x such
that (x, σ) ∈ Ẽ for a prefix σ of A and GA be the set of all (p, y) such that

13

(p, y, τ) ∈ G̃ for some prefix τ of A. Furthermore let su be the sum over all
2−|p| where (p, u) ∈ GA and s be the sum over all su. It holds that s ≤ 3 by the
following reason: The sum over all 2−|p| such that UA⊕EA

(p) = u is bounded
by 1. So consider now any (p, u) ∈ GA such that UA⊕EA

(p) is either undefined
or different from u. Let τ be the prefix of A with (p, u, τ) ∈ G̃. Then there
must be some prefix σ of A longer than τ where an element bounded by |τ |
goes into EA. Then the corresponding e of this stage satisfies that rB

|σ| < 2−e

and 2−|p| contributes to the sum rB
|σ|. Since each e is dealt with in only

one step, the sum of 2−|p| going over all (p, u) ∈ GA with UA⊕EA

(p) 6= u is
bounded by 2−0 + 2−1 + . . . = 2. It follows that s is bounded by 3.

The set EA is coinfinite by the first condition. Now consider an infinite
set WA

e and denote by qx the sum of all 2−|p| where there is a (p, y, σ) ∈ G̃
with x ≤ |σ|. Since s ≤ 3, these sums qx go to 0. Thus there is an x ∈ WA

e

with x ≥ 2e and qx < 2−e. In the case that EA and WA
e are disjoint, all

three conditions would be satisfied for e, x and almost all prefixes σ of A.
This would give the contradiction that x goes into EA eventually. Thus the
set EA is simple relative to A.

Recall that the set GA is recursively enumerable relative to A and that the
sum s over 2−|p| for all (p, u) ∈ GA is bounded by 3. Then the Kraft-Chaitin
Theorem [10] says that there is a prefix-free partial A-recursive function V A

and a constant c such that for every u there is a program q with V A(q) = u
and su ≤ 2c · 2−|q|. In particular, for every program p where UA⊕EA

(p) is
defined, there is a q such that V A(q) = UA⊕EA

(p) and 2−|p| ≤ 2c · 2−|q|. It
follows that |q| ≤ |p|+ c. Therefore, V A is one possible choice for a universal
machine for A and witnesses that all u satisfy HA(u) ≤ HA⊕EA

(u) + c. So
A⊕ EA is low for prefix-free Kolmogorov complexity relative to A. 2

Theorem 3.7 There is an r.e., Turing-incomplete set A such that for any

recursive, monotone nondecreasing and unbounded function k with k(0) = 1
the Kolmogorov function is k(n)-enumerable relative to A.

Proof: Let E be the enumeration operator from Theorem 3.6. Jockusch and
Shore [14] showed that for any enumeration operator satisfying (∀B) [W B ≥T

B] there is an r.e. set A such that WA has the Turing degree of the halting
problem. This holds of course for the operator WA = A ⊕ EA from Theo-
rem 3.6 and so one can pick an r.e. set A with WA ≡T K. Let UA be the
universal function for HA relative to A. Note that A <T WA since EA is
simple relative to A.

Given the recursive function k, one defines an A-recursive k(n)-enumer-
ator f̃ which does for input x of length n the following:

f̃(x) enumerates the component vx of each vector v such that
v is so long that the component vx exists and v = UA(p) for a
program p with |p| ≤ log(k(n)).

14

Note that due to UA being prefix-free, f̃ is already a k(n)-enumerator. Now
one constructs from f̃ an k(n)-enumerator for C by

fx
t =

{

C(x) if t = 1 and C(x) /∈ {f̃x
1 , . . . , f̃

x
bx
};

f̃x
t otherwise.

where fx
t is undefined whenever t 6= 1 and f̃x

t is undefined.
It remains to show that f is also an A-recursive enumerator for C. This

is done by showing that f, f̃ are finite variants. The proof of this uses the
following property of the universal K-recursive machine UK as a tool: For
every number r there is a program pr such that UK(pr) computes the vector

(C(λ), C(0), C(1), C(00), C(01), . . . , C(1m))

where m is the first length such that k(m) ≥ 2r+1. Without loss of generality,
pr is the shortest program for this vector. Note that m can be computed from
r since k is recursive. Thus the length of pr is logarithmic in the parameter r.

Now let r(x) = log(k(|x|)) for any x; more precisely, let n = |x| and r(x)
be the unique integer with 2r(x) ≤ k(n) < 2r(x)+1. Then m > n for the m
computed from r(x) above. So UK(pr(x)) outputs a vector v such that vx

exists and is equal to C(x).
Due to the choice of A, there is a program qr(x) with UA(qr(x)) = UK(pr(x))

which is only by a constant longer than pr(x). So, for almost all x, |qr(x)| ≤

log(k(|x|)) and UA(qr(x)) is taken into account by f̃(x). Therefore, for almost

all x, the function f̃(x) enumerates C(x) relative to A. The enumerators f̃
and f are finite variants and f is an A-recursive k(n)-enumerator for C. 2

We now use Theorem 3.7 to extend our result to strong enumerations as
follows.

Theorem 3.8 Let k be a strictly positive, monotone nondecreasing recursive

function. Then there exists a set B not above K such that the Kolmogorov

function has a strong B-recursive k-enumerator.

Proof: Take the set A from Theorem 3.7 and consider the partial A-recursive
function i, x → fx

i equal to the ith element enumerated by the enumeration
algorithm in the proof of Theorem 3.7. Recall that A 6≥T K. Using the
fact that i, x → fx

i is recursively bounded and Remark 3.3, there is an
extension f of f such that its domain is {(i, x) : 1 ≤ i ≤ k(|x|)} and its
graph B = {(i, x, y) : y = f

x

i ∧ 1 ≤ i ≤ k(|x|)} satisfies A ⊕ B 6≥T K. In
particular, f is a strong B-recursive k(n)-enumerator for C. 2

15

4 Enumerators as Oracles

We saw in the previous section that for constant k, a k-enumerator for the
Kolmogorov function cannot be computed without access to an oracle that
is already as hard as K. That construction was not uniform in the given
enumerator. Therefore we ask in this section which information can be re-
trieved uniformly from a given strong 2-enumerator for C. The following
result shows that, under certain assumptions about the choice of the uni-
versal Turing machine used in defining Kolmogorov complexity, one can ex-
tend any {0, 1}-valued partial-recursive function uniformly using any strong
2-enumerator for the Kolmogorov function as an oracle.

Theorem 4.1 Let ψ be any given partial-recursive {0, 1}-valued function.

One can choose the universal machine U on which the Kolmogorov complexity

is based in such a way that there is a fixed program e such that, given any

strong 2-enumerator f for the Kolmogorov function, ϕf
e computes a total

extension of ψ with only one query to f .

Proof: One chooses U such that C(x) ≡ ψ(x) modulo 3 whenever ψ(x) is
defined and C(x) ≡ 2 modulo 3 otherwise. This is obtained by starting with
an arbitrary universal machine Ũ and defining that U(p10l+l′) = Ũ(p) if Ũ(p)
is defined, |p|+1+l ≡ 0 modulo 3 and either l′ = 2 or l′ = ψ(Ũ(p)). For those
q where U(q) cannot be defined by this method, U(q) remains undefined.

Now define the program e taking the first case to apply from the be-
low case distinction where fx

1 , f
x
2 are the two values given by any strong

2-enumerator f for C queried exactly at x:

ϕf
e (x) =

ψ(x) if fx
1 6≡ 2 ∧ fx

2 6≡ 2 modulo 3;
0 if fx

1 6≡ 1 ∧ fx
2 6≡ 1 modulo 3;

1 if fx
1 6≡ 0 ∧ fx

2 6≡ 0 modulo 3.

Since there are only two values f x
1 , f

x
2 , it is clear that at least one of these

conditions holds. Furthermore, if both, f x
1 and fx

2 , are different from 2 mod-
ulo 3, then ψ(x) is defined. Thus, ϕf

e is total and {0, 1}-valued. If ψ(x) ↓= b
then one of fx

1 and fx
2 must be b, so the case for ϕf

e (x) = 1 − b does not
apply and ϕf

e (x) is correct by either taking the case ϕf
e (x) = ψ(x) or the case

ϕf
e (x) = b. So, the program e works with every strong 2-enumerator supplied

as oracle f to e. 2

Note that the above construction goes also through if you take any strong
2-emumerator for C(x) modulo 3 as an oracle. This is no longer true for
2-enumerators itself, since there is a recursive 2-enumerator f with this prop-
erty: fx

1 = 2 and fx
2 = ψ(x) whenever that is defined. Then one has that

16

there is for every x a t with f x
t being defined and equivalent to C(x) mod-

ulo 3. So this construction needs strong 2-enumerators f for which f x
1 and

fx
2 are always both defined.

Since C is as hard as the halting problem, it is natural to ask whether
Theorem 4.1 also holds for computing a fixed set, for example K, instead
of just finding an arbitrary extension depending on the queried enumerator.
Theorem 4.2 answers this question negatively. We extend the negative result
in two directions: For every fixed Turing reduction e, every nonrecursive set
A and every recursively bounded function g there is a strong 2-enumerator
for g such that the reduction e does not compute A relative to the given
enumerator. Furthermore, in case of weak-truth-table reducibility, we can
consider all reductions instead of a fixed one. Corollary 4.5 shows that, given
A and g as above, there is a strong 2-enumerator for g which is not wtt-hard
for A.

Theorem 4.2 Assume that A can be computed by a fixed reduction making

one query relative to any strong 2-enumerator of C. Then A is recursive.

Proof: Assume that the hypothesis of the theorem holds. That is, there is a
program e and a recursive functions h such that for every strong 2-enumerator
f of C,

∀x A(x) = ϕ{f
h(x)
1 ,f

h(x)
2 }

e (x).

Now it is shown that A is recursive.
Let c be a constant with C(z) ≤ |z| + c for all z. Let y be the query

generated by e on input x. Let ϕf
e (x) denote the outcome of the computation

e on input x using oracle f and let ϕ{n1,n2}
e (x) denote the outcome of the

program e run on input x, but with the numbers n1, n2 substituted for the
answer to the query y. We determine whether x ∈ A as follows: Compute
ϕ{n1,n2}

e (x) for all possible n1, n2 ∈ {0, 1, . . . , |y| + c}. Clearly if there are an
n1 and an i ∈ {0, 1} such that (∀n2 ∈ {0, 1, . . . , |y| + c}) [ϕ{n1,n2}

e (x) = i],
then also ϕf

e (x) = i since C(y) is one of these values. It remains to argue
that such an n1 exists. However n1 = C(y) meets this condition. 2

This theorem easily generalizes in two directions: to more general reductions
and to more general functions.

Corollary 4.3 Let g be any recursively bounded function. Suppose that there

is a fixed reduction ϕe that weak-truth-table reduces a set A to all possible

strong 2-enumerators for g. Then A is recursive.

Proof: Let g′(x) = 〈g(q1), . . . , g(qm)〉, where q1, . . . , qm are the queries
made by the reduction ϕe on input x. The reduction ϕe must compute

17

A(x) correctly if, for each qi, it is given a pair of answers (ai, bi) such
that g(qi) ∈ {ai, bi}. A fortiori, ϕe must compute A(x) correctly if it
is given a pair of sequences (〈a1, . . . , am〉, 〈b1, . . . , bm〉) such that g′(x) ∈
{〈a1, . . . , am〉, 〈b1, . . . , bm〉}. It follows that there is a fixed reduction ϕe′ from
A to all possible strong 2-enumerators for g′. Since g′ is recursively bounded,
A is recursive by the same argument as in the proof of Theorem 4.2. 2

The condition that g is recursively bounded is necessary. Recall the non-
recursive convergence-modulus cK of K from the proof of Theorem 3.4: cK
can be computed with one query relative to any strong k(n)-enumerator f
for cK. Querying f at input x, one receives a set f(x) containing cK(x) and
knows that cK(x) = s for the maximal s ∈ f(x) such that Ks∩{0, 1, . . . , x} 6=
Ks−1∩{0, 1, . . . , x}. Furthermore, the halting problem K itself is computable
relative to any enumerator for cK.

With a bit more care, the proof of Theorem 4.2 even extends to Turing
reductions.

Theorem 4.4 Let g be any recursively bounded function. Suppose that there

is a fixed reduction ϕe that Turing reduces a set A to all possible strong 2-
enumerators for g. Then A is recursive.

Proof: Let b(x) be a recursive function such that 0 ≤ g(x) ≤ b(x) for all x.
A full query tree of e on input x of the following form: At each internal

node we have labelled the query q and a possible answer yq ≤ b(q). There is a
branch for each z ≤ b(q) representing (yq, z) as the strong 2-enumeration for
g(q). A full query tree has finite size, every leaf has the computation halting
and the answers at all leaves agree.

First Claim: A full query tree for x exists.
Simply consider the tree with yq = g(q) at every internal node. All leaves

must give the same (correct) answer. If the tree is not finite, by König’s
lemma it must have an infinite path which defines a strong 2-enumerator
that e fails to reduce to.

Second Claim: Any full query tree gives the correct answer on all leaves.
Consider a path such that either yq = g(q) or z = g(q) for all queries q

on that path. Since ϕe reduces A to all strong 2-enumerators for g, this leaf
must give the correct answer. Since all leaves give the same answer, all leaves
give the correct answer.

The recursive algorithm for A just searches for a full query tree and outputs
the answer that all leaves agree to. 2

18

Corollary 4.5 For any nonrecursive setA and any recursively bounded func-

tion g there exists a strong 2-enumerator f of g such that A 6≤wtt f .

Proof: Use a finite extension argument on Theorem 4.4. Start with σ0

having the domain ∅. For every i there is an extension fi of σi and an xi

such that fi is a strong 2-enumerator for g and the i-th wtt-reduction ϕei

fails to compute A(xi) from fi. Since the reduction queries fi at only finitely
many places, one can take an upper bound ui on the length of σi and the
queried places. Let σi+1 be the restriction of fi to the domain {0, 1, . . . , ui}.
σi+1 is a strong 2-enumerator for g on this domain and the wtt-reductions
ϕe0, ϕe1, . . . , ϕei

do not wtt-reduce A to any extension of σi+1. Repeating
this argument inductively, one obtains that the limit f of all σi is a strong
2-enumerator for g to which A is not wtt-reducible. 2

5 Prefix-Free Kolmogorov Complexity

In this section it is shown that the results for C also hold for the prefix-free
complexity H: H is based on a unary numbering U such that for all distinct
programs p, p′ in the domain of U it holds that neither p is a prefix of p′

nor p′ a prefix of p. Furthermore, U has to be universal among all these
numberings.

With minor modifications, the proof of Theorem 3.1 works also for prefix-
free Kolmogorov complexity. The corresponding result is then the following.

Theorem 5.1 There is a constant a depending only on the universal ma-

chine U defining the prefix-free Kolmogorov complexity H such that every

k(n)-enumerator f satisfies k(n) ≥ n/a for almost all n.

Furthermore, one can also transfer the hardness-result Theorem 3.4 to prefix-
free Kolmogorov complexity to H. Here of course one defines the Xn,i with
respect to approximations to H instead of approximations to C. The most
important ingredient for transferring the proof is that one can build a prefix-
free machine which codes every x ∈ Xm,i with 3 log(m)+4+(m+1)(m+1−i)
many input bits by coding first in 3 + 2 log(m) bit the number m in a prefix
free way, than using log(m)+1 bits to code i and code with (m+1)(m+1−i)
bits how many numbers go into Xm,i before x. Thus the upper bound on
C(F (m)) is actually an upper bound on H(F (m)). Furthermore, the lower
bound on Csi

(F (m)) from the proof of Theorem 3.4 can directly be taken as
a lower bound of Hsi

(F (m)) in this proof. The rest of the proof transfers
directly. Thus one has the following result.

Theorem 5.2 Let k be a constant. If the prefix-free Kolmogorov function H
is k-enumerable relative to a set A then A ≥T K.

19

The proof of Theorem 3.7 does not use any property of C besides the fact
that C is a total K-recursive function. This clearly also holds for H and thus
the result transfers immediately.

Theorem 5.3 There is an r.e., Turing-incomplete set A such that for any

recursive, monotone nondecreasing and unbounded function k with k(0) = 1
the prefix-free Kolmogorov function is k(n)-enumerable relative to A.

Note that the proof does not use any other property of C and H as that they
are approximable from above. Thus the result holds for all functions which
are approximable from above.

The choice of the underlying universal function U in Theorem 4.1 works
also for a universal function defining the prefix-free Kolmogorov complexity.

Theorem 5.4 Let ψ be any given partial-recursive {0, 1}-valued function.

One can choose the universal machine U on which prefix-free Kolmogorov

complexity is based in such a way that there is a program e which computes

a total extension ϕf
e of ψ with one query to any strong 2-enumerator f for

the prefix-free Kolmogorov function.

The further results of Section 4 state that the following holds for every given
function g.

• No non-recursive set is Turing reducible to all strong 2-enumerators for
g by the same reduction;

• No non-recursive set is wtt-reducible to all strong 2-enumerators of g.

For these results it does of course not matter whether g is C, is H or is
something else.

6 Ressource-Bounded 2-Enumerators

We will be able to characterize the class Sp
2 which was introduced by Russel

and Sundaram [24] and the class PSPACE in terms of reductions to strong
2-enumerators for some functions. Note that NP ⊆ Sp

2 ⊆ Σp
2 ∩ Πp

2 .

Definition 6.1 A set A is in Sp
2 if and only if there exist a polynomial p and

a polynomial time computable ternary predicate Q such that

• x ∈ A if ∃v ∈ {0, 1}p(|x|) such that (∀w ∈ {0, 1}p(|x|)) [Q(x, v, w)];

• x /∈ A if ∃w ∈ {0, 1}p(|x|) such that (∀v ∈ {0, 1}p(|x|)) [¬Q(x, v, w)].

20

Note that for general languages in Σp
2 ∩Πp

2 the second occurrence of Q could
be replaced by an arbitrary polynomial time predicate Q′. It is not known
whether Sp

2 = Σp
2 ∩ Πp

2 . The class Sp
2 can be characterized in terms of reduc-

tions to strong 2-enumerators for a bounded function g where g is bounded
iff there is a polynomial p with |g(x)| ≤ |p(|x|)| for all x.

Theorem 6.2 The following statements are equivalent for any set A.

(a) A ∈ Sp
2 ;

(b) There are a fixed btt(1)-reduction M and a polynomially bounded func-

tion g such that M computes A relative to any strong 2-enumerator

of g;

(c) There is a fixed tt-reduction N and a {0, 1, 2}-valued function h such

that N tt-reduces A to any strong 2-enumerator of h.

(d) There is a fixed tt-reduction N ′ and a polynomially bounded function h′

such that N ′ tt-reduces A to any strong 2-enumerator of h′.

Proof: (a) ⇒ (b): Given A, let p,Q as in Definition 6.1. Furthermore, let g
be a function such that

• if x ∈ A then g(x) = (v, 1) where v is the leftmost witness in {0, 1}p(|x|)

for x ∈ A;

• if x /∈ A then g(x) = (w, 0) where w is the leftmost witness in {0, 1}p(|x|)

for x /∈ A.

A strong 2-enumerator for g produces for input x two candidates (u, a) and
(u′, a′). If a = a′, then one knows that A(x) = a. If a = 0 and a′ = 1 then
A(x) = Q(x, u′, u). If a = 1 and a′ = 0 then A(x) = Q(x, u, u′).

(b) ⇒ (c): Without loss of generality, one can assume that M on input x
computes a position q(x) such that g(q(x)) is a number between 0 and 2|x|c

for some constant c. The idea is to define a function h and a reducibility N
from A to strong 2-enumerators of h which can simulate the reduction M
from A to any strong 2-enumerator for g.

In order to simulate M , one considers for given input x the place q(x) and
codes q(x) at polynomially many places into h such that one can compute
two possible values for g(q(x)) with one being correct from a tt-reduction to
any strong 2-enumerator for h. For input x, i, j, a, b, consider the following
two statements:

• The ith bit of g(q(x)) is a;

21

• The jth bit of g(q(x)) is b.

Now let h(x, i, j, a, b) be the number of those statements, which are correct.
The function h is {0, 1, 2}-valued. Furthermore, for fixed x, only the i, j ∈
{0, 1, . . . , c · log(|x|)} and a, b ∈ {0, 1} are relevant, so one has to query a
given strong 2-enumerator of h only at polynomially many places and these
queries an be done in parallel.

There are no three different numbers y1, y2, y3 which are consistent with
all answers to h: There is a position i such that the ith digit of one number,
say y3, is a while the ith digit of the other two numbers y1, y2 differ from a.
Furthermore, there is a position j where the digits of y1, y2 differ. Say, y2

and y3 have the same jth digit b and y1 not. It follows that

h(x, i, j, a, b) =

0 if g(x) = y1;
1 if g(x) = y2;
2 if g(x) = y3.

So at most 2 numbers are consistent with all the outputs of the strong
2-enumerator for h on those inputs x, i, j, a, b which satisfy i, j ∈ {0, 1, . . . ,
c · log(|x|)} and a, b ∈ {0, 1}.

One can determine these two numbers modulo 2m by just considering
the last m binary digits. Thus one can construct two candidates for g(q(x))
step by step with the search space always having only at most 2 candidates
modulo 2m before m is incremented; after m is incremented and before the
conditions on the new digit are taken into account, the number of candidates
is at most 4. So the search-space to construct the two possible vectors for
g(q(x)) contains in every step only up to 4 candidates and the search is
performed in polynomial time. Thus one can turn the btt(1)-reduction M
from A to strong 2-enumerators for g into a tt-reduction N from A to strong
2-enumerators for h.

(c) ⇒ (d) holds by definition since every {0, 1, 2}-valued function is polyno-
mially bounded.

(d) ⇒ (a): Let N ′ compute the tt-reduction from A to strong 2-enumerators
for h′. Without loss of generality there is a polynomial p1 such thatN ′ queries
the strong 2-enumerator at p1(|x|) many places at input x and the length of
each of the places is bounded by p1(|x|). Furthermore, there is a polynomial
p2 bounding the length of h′; |h′(u)| ≤ p2(|u|) for all u. Without loss of
generality every considered strong 2-enumerator f for h outputs on input u
a pair (fu

1 , f
u
2) such that both strings have at most the length p2(|u|). Now

one defines the predicate Q such that Q(x, v, w) is the output of N querying
f if v, w are lists of strings such that v contains the values f u

1 and w contains
the values fu

2 where u = u1, u2, . . . , up1(|x|) runs over the places queried by

22

N ′. Note that the length of v, w are bounded by 2 · p1(|x|) · p2(p1(|x|)). The
predicate Q has the following properties:

• Q(x, v, w) is true if x ∈ A and v = h(u1)h(u2) . . . h(up(x));

• Q(x, v, w) is false if x /∈ A and w = h(u1)h(u2) . . . h(up(x)).

These properties witness that A ∈ Sp
2 . 2

Definition 6.3 Let U be a fixed universal space-bounded machine with two

inputs p, w which respects the space bound 2(|p| + |w|). In the following,

Cspace(x|w) denotes the size of the smallest program p such that U(p, w) = x.
Cspace(x|w) is called the space-bounded conditional Kolmogorov complexity.

Remark 6.4 Recall that QBF is the set of all true formulas of the form

∃a1∀b1∃a2∀b2 . . .∃an∀bnφ(a1, b1, a2, b2, . . . , an, bn)

where a1, b1, a2, b2, . . . , an, bn are Boolean variables and φ is variable-free. The

parameter n is not a constant. The set QBF is PSPACE-complete. Formulas

of this type are called QBF -instances or just instances.

An important property of QBF is self-reducibility. Given a QBF -instance

as above, one can write it as

∃a1∀b1ψ(a1, b1)

where the other quantifiers and their variables are moved into the formula ψ.

Then QBF is self-reducible by the following formula:

∃a1∀b1ψ(a1, b1) ⇔ (ψ(0, 0) ∧ ψ(0, 1)) ∨ (ψ(1, 0) ∧ ψ(1, 1)).

So every instance with 2n variables, n > 0, can be reduced to four smaller

instances with 2n− 2 variables.

Proposition 6.5 For every given constants c, k there is a constant ` such

that one can find with queries to a strong k-enumerator f at the places

f(v|`, w) for all v ∈ {0, 1}` a vector u ∈ {0, 1}` with Cspace(u|`, w) > c.
The time and space complexity to find u is independent of w except at the

place where the queries to f(v|`, w) occur and w has to be copied onto the

oracle tape to query f .

Proof: In the following, let f(v) = {f v
1 , . . . , f

v
m} be the output of f on input

w and let f v
1 < . . . < f v

k .
Call a set I of strings of the same length an interval iff the binary values of

the strings in I form an interval in the natural numbers. Let c′ be a constant

23

such that c′ ≥ 2 and for every interval I and every u, u′ ∈ I and all w hold
that Cspace(u

′|`, w) ≤ Cspace(u|`, w)+c′+log(||I||) where ||I|| is the cardinality
of I.

Now let c1 = c and inductively ci+1 = 2ci + c′ for i = 1, 2, . . . , k. Let
` = ck+1 and let Li = {v ∈ {0, 1}` : f v

i ≤ ci} for i = 1, 2, . . . , k.
On the one hand, there are less than 2ck+1 strings with conditional com-

plexity ck for the given w; since f v
k is an upper bound for this complexity

the cardinality of Lk is less than 2ck+1. On the other hand, there are 4ck+2

strings in {0, 1}`. So there is an interval of length 2ck not containing any
element of Lk.

Thus there is a smallest i such that an interval I ⊆ {0, 1}` of length 2ci

does not contain any string from Li. Fix this I.
If i = 1, one can just pick and output any u ∈ I since Cspace(u|`, w) ≥

fu
1 > c1 ≥ c.

If i > 1 then there are 2ci−1+1 disjoint subintervals J of length 2ci−1

each of them containing an element of Li−1. If there is a u ∈ I ∩ Li−1

satisfying Cspace(u|`, w) ≤ fu
i−1, then Cspace(v|`, w) ≤ f v

i−1 + c′ ≤ ci−1 + c′

for all v ∈ I ∩ Li−1. But all these v satisfy that f v
i−1 ≤ ci−1 and f v

i > ci ≥
ci−1 + c′ and thus it would hold that Cspace(v|`, w) ≤ ci−1 in contradiction to
||Li−1 ∩ I|| ≥ 2ci−1+1. Thus Cspace(u|`, w) ≥ ci > c for every u ∈ I ∩ Li−1 and
one can pick and output any such u. 2

Theorem 6.6 For every constant k, there is a fixed polynomial time Turing

reduction M such that QBF = M f for all strong k-enumerators f of the

space-bounded conditional Kolmogorov function Cspace.

Proof: In the following, x is the input to M and represents a QBF -instance.

At the beginning let m = 1 and y1 = x. Initialize the set V of possible
characteristic functions (QBF (x), QBF (y1)) as {(0, 0), (1, 1)}. Now M runs
the following loop until the algorithm halts.

• For given m and instances y1, . . . , ym, M chooses 4m instances z1, . . . ,
z4m by replacing in each formula the first two Boolean variables by 0
and 1, respectively.

• Let g(x, y1, . . . , ym, z1, . . . , z4m) be the 5m + 1-fold characteristic func-
tion

(QBF (x), QBF (y1), . . . , QBF (ym), QBF (z1), . . . , QBF (z4m))

and let r = (x, y1, . . . , ym, z1, . . . , z4m).

• Let g′(`′, r, u1, . . . , uj′) with j ′ = 2`′ − 1 be that string in {0, 1}`′ which
represents an i such that

24

– i is the first number with ui = g(w) if g(r) ∈ {u1, . . . , uj′};

– i = 0 if g(w) /∈ {u1, . . . , uj′}.

Now choose c such that

Cspace(g
′(`′, r, u1, . . . , uj′)|r, `

′, u1, . . . , uj′) ≤ c and

Cspace(0
`′|`′, r, u1, . . . , uj′) ≤ c

for all `′ and j ′ with j ′ = 2`′. This constant c exists since g, g′ are
computable in linear space. Let ` depend on c, k as in Proposition 6.5.

• Let L = {0, 1}5m+1 and j = 2` − 1.

• While |L| ≥ j, use the oracle f to find an i such that ui 6= g(w) where
u1, . . . , uj are the first j members of L and remove ui from L. This i can
be found by searching for a number where the binary representation
b1 . . . bm′ satisfies

Cspace(b1 . . . bm′ |r,m′, u1, . . . , uj) > c.

Such an index can be found by Proposition 6.5.

• Now let W be the set of all strings w ∈ {0, 1}5m+1 such that

– w has never been removed from L;

– w is an extension of an v ∈ V ;

– w is consistent with the self-reduction from QBF on y1, . . . , ym to
QBF on z1, . . . , z4m;

– w is consistent with QBF (zl) whenever zl does not contain any
variables.

• If all w ∈ W give the same value for QBF (x) then output this value
and halt.

• For each different w,w′ ∈ W select one zd(w,w′) such that w,w′ con-
tain different entries for QBF (zd(w,w′)). Replace y1, . . . , ym by a new
sequence of instances y′1, . . . , y

′
m′ being these selected zd(w,w′).

• Repeat the loop with the instances x, y′1, . . . , y
′
m′ and V being the re-

striction of the vectors in W to these instances x, y ′1, . . . , y
′
m′.

Note that the constants c, `, j are the same in every round of the algorithm,
they are just introduced where needed for the first time, so that it is easier to
understand how they are defined. In every step, one selects at most j2 many

25

zd(w,w′) and thus m′, m are both bounded by 4`. Due to this constant bound,
the operations above can in each single step be carried out in polynomial
time with polynomially many queries to f .

Furthermore, it is easy to verify by induction, that whenever the algo-
rithm halts, then the output is QBF (x): the reason is that it is sufficient to
show that the vector v = (QBF (x), QBF (y1), . . . , QBF (ym)) is in V when-
ever the new loop is started. This is true for the initialization. Assume that
same now as induction hypothesis at the beginning of the loop. Then the
vector w = (QBF (x), QBF (y1), . . . , QBF (ym), QBF (z1), . . . , QBF (z4m)) is
in the list L and never removed from L because Cspace(w|r, u1, . . . , uj) ≤ c
whenever w ∈ {u1, . . . , uj}. Since v ∈ V and w extends v, the vector w is
also in W . Its projection (QBF (x), QBF (y′1), . . . , QBF (y′m′)) goes into the
set V for the next iteration of the loop.

So it remains to show that algorithm halts. This is done by showing the
following invariant: every v′ ∈ V different from v differs from v on some
instances y1, . . . , ym. So consider now any w′ ∈ W which assigns to x a
value different from QBF (x). w′ extends some v′ ∈ V . This v′ is different
from v on some y1, . . . , ym as well. Since the values of w′ on y1, . . . , ym are
self-reduced to those on z1, . . . , z4m, there is a zd(w,w′) such that w and w′

differ on zd(w,w′). By the consistency condition it follows that this can only
occur while the zd(w,w′) still has some variable. This zd(w,w′) or some other is
selected into the new vector for the next round and therefore also the new
V satisfies the invariant given. Since all variables are eventually eliminated
from all instances (except x), the remaining vectors in W after that step
assign QBF (x) to x and so the algorithm halts. 2

Theorem 6.7 Let A be any set. Then the following statements are equiva-

lent for A.

(a) A is in PSPACE;

(b) A is Turing reducible by a fixed reduction to every strong 2-enumerator

for the conditional space-bounded Kolmogorov function;

(c) There is a polynomially bounded function g such that A is Turing re-

ducible by a fixed reduction to any strong 2-enumerator of g.

Proof: (a) ⇒ (b) by Theorem 6.6 and the fact that QBF is PSPACE-
complete. (b) ⇒ (c) is trivial. For (c) ⇒ (a) consider a set A and a Turing
reduction M which computes A(x) relative to any strong 2-enumerator f
for g. Now consider the following game with two players Anke and Boris
associated to the reduction at an instance x.

On input x, the computation of M relative to f is simulated. Whenever
M asks for the values f y

1 , f
y
2 , Anke and Boris each supply one of them. Anke

26

wins the game iff M halts with output 0 and Boris wins the game iff M
halts with output 1. If x /∈ A then Anke has a winning strategy by always
supplying g(y): the oracle-answers to every query y contain two values with
g(y) being among them and thus the reduction M behaves as if these answers
are from a strong 2-enumerator f for g. So M returns the value A(x) which
is 0 in this case. If x ∈ A then Boris has the same winning strategy by also
always supplying g(y), this case is symmetric to the previous one and M
returns at the end the value A(x) which now is 1.

So one has for every x a game uniform in x which is played polynomially
many rounds and each round is played in polynomial time. It is well-known
that the problem of which player has a winning strategy for such a game is
in PSPACE. Thus A is in PSPACE. 2

Recall that the class EXP contains all sets which have a decision procedure
using time 2p(n) for some polynomial p where n is the size of the input. This
class can also be characterized as the class of sets A computable in alternating
polynomial space [23, Section 20.1]. Such a characterization is equivalent to
saying that there is a game for A with the following properties:

• x ∈ A iff Anke has a wining strategy for the game starting with a
configuration c(x);

• Every game terminates and either Anke or Boris wins (no tie exists);

• Every configuration in the game starting with c(x) is coded in space
p(|x|) where p is a polynomial;

• For any two configurations (y, z) it can be decided in polynomial space
which of the players Anke or Boris has the right to move at y and
whether this player can move to z.

One can adapt Proposition 6.5 and Theorem 6.6 to the exponential-time com-
putable conditional Kolmogorov function and instances of the EXP-complete
set SCV , using the following concepts and intermediate results.

• SCV is the succinct circuit value problem considered by Papadim-
itriou [23, Section 20.1]. SCV is the set of all succinctly coded circuits
which are evaluated to 1. Formally, a SCV -instance is a quintuple
x = (e1, e2, 0

a, 0b, 0s) satisfying the following:

– The instance x represents an exponentially sized circuit with 2a

gates and 2b input-bits.

– The program e1 computes for any gate at position u ∈ {0, 1}a

two positions v, w ∈ {0, 1}a lexicographically before u, an input-
position z ∈ {0, 1}b and a formula φ such that the value of the

27

gate at u is φ(v′, w′, z′) where v′, w′ are the values of the gates at
v, w and z′ is the value of the zth input-bit.

– The program e2 computes z′ from z for every z ∈ {0, 1}b.

– The programs e1, e2 keep on all legal inputs the space-bound s.

SCV is now the set of all SCV -instances where the gate with position
11 . . . 1 is evaluated to 1.

• Let g compute for any SCV -instance, for anym and for any m positions
in the circuit a vector in {0, 1}m which contains the values of these gates
of the circuit in this instance. There is a polynomial p such that the
function g can be computed in time 2p(n+m) where n is the size of the
instance and m the number of the gates given in the input.

• With queries to any strong 2-enumerator for the exponential-time com-
putable conditional Kolmogorov function one can compute in polynom-
ial space a list L such that the number of members of L is polynomial
in m and that L contains the value of g at the given input. The same
can be done for the function g′ constructed from g as in Theorem 6.6.

• One can adapt Theorem 6.6 to show that SCV ∈ PSPACEf when-
ever f is any strong 2-enumerator of the exponential-time computable
conditional Kolmogorov function. The number of rounds is exponential
and not polynomial as in Theorem 6.6 but the number m of coordinates
in the considered vectors is again bounded by a constant. Therefore
the polynomial bound on the space usage is kept.

These results can be put together to yield the following theorem.

Theorem 6.8 The following statements are equivalent for every set A.

• A is in EXP;

• A is in PSPACEf by a fixed machine where f is any strong 2-enumer-

ator for the exponential-time computable conditional Kolmogorov func-

tion;

• There is a polynomially bounded function g and a fixed machine wit-

nessing that A is in PSPACEf where f is any strong 2-enumerator

for g.

Note that Theorems 6.7 and 6.8 can also stated with any constant k ≥ 2.
A detailed analysis shows that even a slowly growing non-constant function

28

k is possible. But 2`(n) has always to be polynomially bounded, thus only
functions where k(n) ≤ log log(n) can be considered.

And even this bound needs that the algorithm in Theorem 6.7 and the
g′ there is adapted: instead of eliminating single possible solutions from L,
one has to eliminate intervals so that g′ takes an interval of strings and
not a single string as its value. Then one would have to apply an iterated
elimination of a non-desired interval and splitting of the largest remaining
one until only 2` − 1 many intervals of size 1 are left.

The next section deals with the question, what statements can be made
for faster growing k.

7 Space-Bounded Kolmogorov Complexity

Buhrman and Torenvliet [6] show that the interactive proof (IP) protocol for
PSPACE [20, 25] can be simulated by an NP-oracle machine that has access
to a set of space-bounded Kolmogorov random strings. The NP machine in
the proof guesses a sequence of polynomials and a sequence of numbers of
high space-bounded complexity, that are used to generate the proof in the
IP protocol. The fact that these numbers have high complexity is enough
to guarantee correctness, since intersections of known polynomials have low
complexity. For the proof of that theorem it suffices to generate numbers
that have complexity that exceeds some constant. Below, we show how a
strong logn-enumerator can be used by an NP machine to generate numbers
that have complexity that exceeds a given constant. As a consequence, enu-
merating O(logn) values of the space-bounded Kolmogorov function is hard
for PSPACE under NP-reductions.

Theorem 7.1 Let k and m be such that k(n)m(n) ∈ O(logn). Let f be a

strong k-enumerator for Cspace(x | w, |x|), and assume that C(m(n) | n) ∈
O(1). Then there is an NP oracle machine M such that M f on input 〈n, w〉
can guess and verify a string x of length n such that Cspace(x | w, |x|) ≥
m(n) − O(1).

By taking m to be some high enough constant and using Buhrman and
Torenvliet [6, Theorem 5.10], one can obtain the following corollary.

Corollary 7.2 Let f be a strong k(n)-enumerator for Cspace(x | w, |x|) and

let k(n) ∈ O(logn). Then PSPACE = NPf .

Proof of Theorem 7.1: Fix n and w, consider strings of length n, that is,
for the remainder of this proof a string with name x will have |x| = n. Again,

29

let f on input 〈x, w〉 output fx
1 , . . . , f

x
k(n) without loss of generality ordered

such that fx
i < fx

j whenever i < j. Let c be some constant depending on
the choice of universal machine and this conversation. We prove that M can
guess and verify a string of space bounded complexity m(n) − c. The proof
consists of k(n) + 1 cases, depending on the values of the enumerator on
strings of length n. We present case 0, then case 1, then generalize case 1 to
case ` for 1 < ` < k(n) and finally case k(n).

case 0: If there is a string x of length n such that f x
1 > m(n)− c then guess

this string, verify fx
1 > m(n) − c by querying f(x) and output x.

case 1: We are not in case 0, so none of the strings x of length n has f x
1 >

m(n) − c. Let S = {x : fx
2 > 2m(n) − c} and suppose ||S|| > 2m(n)−c.

Let z be the concatenation of the first 2m(n)−c + 1 strings in S. Note
that one of these strings x must have C(x | w, n) ≥ f x

2 > 2m(n) − c
because we are not in case 0 and not all strings x′ in S can have
C(x | w, n) ≤ m(n) − c. We claim that C(z | w, n) ≥ m(n) − c.
Suppose not then let P be a program of at most m(n) − c − 1 bits
that prints z, and let s be a number that reveals the position of the
first substring x in z with C(x | w, n) > 2m(n) − c. Without loss of
generality |P | is exactly m(n)−c−1. Note that |s| ≤ m(n)−c+1. Let
Q be a program that: 1. unpacks P and s from Ps (by first computing
m(n) − c − 1 from n). 2. runs P to obtain z. 3. prints the sth thru
s+ n− 1st bit of z. Without loss of generality Q is self delimited and
of size d < c/2. Then QPs is a string of less than 2m(n) − c bits that
describes a string of complexity greater than 2m(n) − c.

case `: We are not in case `− 1, so there are at least 2n − 2(`−1)m(n)−c − 1
strings x with fx

` ≤ `m(n) − c. Let S = {x | fx
` ≤ `m(n) − c ∧ fx

`+1 >
(`+ 1)m(n)− c}. Suppose that ||S|| > 2`m(n)−c. Note that one of these
strings x must have C(x | w, n) ≥ f x

` > (` + 1)m(n) − c because we
are not in case `− 1 and not all strings x′ in S can have C(x | w, n) ≤
`m(n)− c. Let z be the concatenation of the first 2`m(n) − c+ 1 strings
in S. We claim that C(z | w, n) ≥ m(n) − c. Suppose not, then let
P be a program of at most m(n) − 1 − c bits that prints z and let s
be a number that reveals the position of the first string x in z with
C(x | w, n) > (`+ 1)m(n)− c. Note that |s| ≤ `m(n)− c+ 1. Without
loss of generality P is a string of exactly m(n) − c − 1 bits. Let Q
be a program that: 1. unpacks P and s from Ps (by first computing
m(n) − c − 1 from n). 2. runs P to obtain z. 3. prints the sth thru
s+n−1st bit of z. Again without loss of generality, Q is self delimited
and of size d < c/2. Then QPs is a string of less than (`+ 1)m(n) bits
that describes a string of complexity greater than (`+ 1)m(n).

30

case k(n): We are not in case k(n)−1. There are at least 2n−2(k(n)−1)m(n)−c

− 1 strings x with fx
k(n) ≤ k(n)m(n) − c. However there is a constant

b such that there are 2n/b random strings, so this case cannot occur.

The NP machine can now on input x and w given f as an oracle guess a
number ` < k(|x|) (the case). If ` = 0 it guesses a y of length n such that
f y

1 > m(n) − c. Otherwise it guesses S ′ ⊆ S = {x | fx
` ≤ `m(n) − c ∧ fx

`+1 >
(`+1)m(n)−c} such that ||S ′|| = 2`m(n)−c +1 and lets z be the concatenation
of all strings in S ′. By the first part of the proof C(z | w) > m(n) − c. 2

Obvious extensions of the above theorem are: (1) strengthen the reduction
type in Corollary 7.2 to deterministic polynomial time and (2) weaken the
enumerator to f(n) where f(n) is some function between log n and n. In
the following theorem we create a relativized world that may indicate that
these extensions maybe hard to find. However, note that Corollary 7.2 has
a non-relativizing proof.

Theorem 7.3 There is a relativized world where Cspace is polynomial-time

log2(n)-enumerable but not polynomial-time computable; here n = |x| + |w|
when Cspace(x | w) has to be computed.

Proof: Start with a relativized world where P = PSPACE. Let b0 = 1
and bm+1 = 2bm for all m. Now add an oracle A satisfying the following
conditions:

• A is in EXP relative to the given world;

• If n /∈ {b0, b1, . . .} then A ∩ {0, 1}n is empty;

• For every m, the intersection A∩{0, 1}bm contains exactly one element
xm;

• Only the last h(bm) bits of xm can be different from 0 where h(n) =
log(n)·log(n)

log log(n)
;

• There is no sparse set in PSPACE which contains infinitely many xm.

Note that PSPACEA 6= PA in the given relativized world since one can com-
pute the partial function 0bm → xm in PSPACEA but not in PA.

Since P = PSPACE (without oracle A) one can compute Cspace. Of course
CA

space(x | w) ≤ Cspace(x | w) + c1 for some constant c1. On the other
hand, if UA(p, w) = x one knows that there is a further machine V with
V (vp, w) = UA(p, w) where v is the last h(bm) bits of xm for the largest m
where |xm| ≤ 2 · (|p| + |w|). Note that the computation of UA(p, w) cannot
access the oracle A at strings longer than 2 · (|p| + |w|). Then one knows

31

that a program p′ with U(p′, w) = V (vp, w) is at most c2 bits longer than
|vp| and Cspace(x | w) ≤ CA

space(x | w) + c2 + h(2 · (|x| + |w|)) ≤ CA
space(x |

w) + c3 + 3 · h(|x| + |w|) for a suitable constant c3. This gives that

Cspace(x | w) − c3 − 3 · h(|x| + |w|) ≤ CA
space(x | w) ≤ Cspace(x | w) + c1

and CA
space is (3 ·h(n)+ c1 + c3 +1)-enumerable. If n is sufficiently large, this

expression is below log2(n). If n is not large enough, one can get CA
space(x | w)

from some table. Thus CA
space has a PA-computable strong log2(n)-enumer-

ator although PSPACEA 6= PA. 2

Acknowledgments

We would like to thank William Gasarch, André Nies, Jim Owings, Sebas-
tiaan A. Terwijn and Theodore A. Slaman for proofreading and interesting
discussions on the subject; Gasarch also suggested to us the investigation of
enumerations of the Kolmogorov function as a research topic. Paul Vitányi
provided reference [27].

References

[1] Andris Ambainis, Harry Buhrman, William Gasarch, Bela Kalyanasun-
daram, and Leen Torenvliet. The communication complexity of enumer-
ation, elimination and selection. In Proc. 15th IEEE Conf. on Compu-

tational Complexity, pages 44–53, 2000.

[2] Amihood Amir, Richard Beigel, and William Gasarch. Some connec-
tions between bounded query classes and nonuniform complexity. In
Proceedings of the 5th Annual Conference on Structure in Complexity

Theory, pages 232–243, 1990.

[3] Janis M. Barzdin. Complexity of programs to detemine whether natural
numbers not greater than n belong to a recursively enumerable set.
Soviet Mathematics Doklady, 9:1251–1254, 1968.

[4] Richard Beigel. Query-limited Reducibilities. PhD thesis, Department
of Computer Science, Stanford University, 1987.

[5] Richard Beigel, William Gasarch, John Gill, and Jim Owings Jr. Terse,
superterse and verbose sets. Information and Computation, 103:68–85,
1993.

32

[6] Harry Buhrman and Leen Torenvliet. Randomness is hard. SIAM Jour-

nal on Computing, 30(5):1485–1501, 2000.

[7] Jin-Yi Cai and Lane Hemachandra. Enumerative counting is hard. In-

formation and Computation, 82(1):34–44, 1989.

[8] Jin-Yi Cai and Lane Hemachandra. A note on enumerative counting.
Information Processing Letters, 38(4):215–219, 1991.

[9] Gregory Chaitin. On the length of programs for computing finite binary
sequences. Journal of the Association for Computing Machinery, 13:547–
569, 1966.

[10] Gregory Chaitin. A theory of program size formally identical to infor-
mation theory. Journal of the Association for Computing Machinery,
22:329–340, 1975.

[11] Richard Friedberg and Hartley Rogers. Reducibilities and completeness
for sets of integers. Zeitschrift für Mathematische Logik und Grundlagen

der Mathematik, 5:117–125, 1959.

[12] William Gasarch and Frank Stephan. A techniques oriented survey of
bounded queries. In Cooper and Truss, editors, Models and Computabil-

ity: Invited Papers from Logic Colloquium 1997 – European Meeting of

the Association for Symbolic Logic, Leeds, July 1997, pages 117–156.
Cambridge University Press, 1999.

[13] Juris Hartmanis. Generalized Kolmogorov complexity and the struc-
ture of feasible computations. In Proceedings of the 24th Annual IEEE

Symposium on Foundations of Computer Science, pages 439–445, 1983.

[14] Carl Jockusch and Richard Shore. Pseudo-jump operators I: the r.e.
case. Transactions of the American Mathematical Society, 275:599–609,
1983.

[15] Carl G. Jockusch Jr. and Robert I. Soare. Π0
1 classes and degrees of

theories. Transactions of the American Mathematical Society, 173:33–
56, 1972.

[16] Andrei Kolmogorov. Three approaches for defining the concept of infor-
mation quantity. Problems of Information Transmission, 1:1–7, 1965.

[17] Martin Kummer. On the complexity of random strings. In Proceedings

of the 13th Symposium on Theoretical Aspects of Computer Science, vol-
ume 1046 of Lecture Notes in Computer Science, pages 25–36. Springer,
1996.

33

[18] Martin Kummer and Frank Stephan. Effective search problems. Math-

ematical Logic Quarterly, 40:224–236, 1994.

[19] Ming Li and Paul M.B. Vitányi. An Introduction to Kolmogorov Com-

plexity and Its Applications. Graduate Texts in Computer Science.
Springer-Verlag, second edition, 1997.

[20] Carsten Lund, Lance Fortnow, Howard Karloff, and Noam Nisan. Alge-
braic methods for interactive proof systems. Journal of the Association

for Computing Machinery, 39(4):859–868, October 1992.

[21] André Nies. Lowness properties and randomness. Manuscript, 2003.

[22] Piergiorgio Odifreddi. Classical Recursion Theory. North-Holland, 1989.

[23] Christos H. Papadimitriou. Computational Complexity. Addison-Wesley,
1994.

[24] Alexander Russel and Ravi Sundaram. Symmetric alternation capturers
BPP. Computational Complexity, 7:152–162, 1998.

[25] Adi Shamir. IP=PSPACE. Journal of the Association for Computing

Machinery, 39(4):869–877, October 1992.

[26] Ray Solomonoff. A formal theory of inductive inference, part 1 and part
2. Information and Control, 7:1–22, 224–254, 1964.

[27] Alexander K. Zvonkin and Leonid A. Levin. The complexity of finite
objects and the development of the concepts of information and ran-
domness by means of the theory of algorithms. Russian Mathematical

Surveys, 25:83–124, 1970.

34

ftpmail@ftp.eccc.uni-trier.de, subject ’help eccc’
ftp://ftp.eccc.uni-trier.de/pub/eccc
http://www.eccc.uni-trier.de/eccc
ECCC
 ISSN 1433-8092

